Strontium isotope dating

After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or decay product.In many cases, the daughter nuclide itself is radioactive, resulting in a decay chain, eventually ending with the formation of a stable (nonradioactive) daughter nuclide; each step in such a chain is characterized by a distinct half-life.The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or gain of such isotopes since the sample was created.It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration.This predictability allows the relative abundances of related nuclides to be used as a clock to measure the time from the incorporation of the original nuclides into a material to the present.The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation.Among the best-known techniques are radiocarbon dating, potassium–argon dating and uranium–lead dating.

strontium isotope dating-18strontium isotope dating-5strontium isotope dating-50

This transformation may be accomplished in a number of different ways, including alpha decay (emission of alpha particles) and beta decay (electron emission, positron emission, or electron capture).Radiometric dating or radioactive dating is a technique used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed.The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay.Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample.For example, the age of the Amitsoq gneisses from western Greenland was determined to be Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and enough of the daughter product is produced to be accurately measured and distinguished from the initial amount of the daughter present in the material.

Leave a Reply